## Graphs and Units of Slope and Y-intercept

After students linearize a graph, they know that they can find the relationship between the two variables on the X - and Y -axes. They merely use the equation for a straight line $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ where m is slope and $b$ the $Y$-intercept. But what are the units of the slope and $Y$-intercept? One answer is that the units of the slope are the units of $\Delta y / \Delta x$ and the units of the Y-intercept are the units of the Y-axis. The next best way to answer this question is to use information provided by the graphing program Logger Pro.

$\left.$| $\mathbf{t}$ |
| :---: | :---: |
| $(\mathbf{s})$ | | $\mathbf{v}$ |
| :---: |
| $(\mathbf{m} / \mathbf{s})$ | \right\rvert\,

Say that students are given the data to the left for time $t$ (expressed in seconds, $s$ ) and velocity v (expressed in meters per second, $\mathrm{m} / \mathrm{s}$ ). A graph is made plotting ( $\mathrm{t}, \mathrm{v}$ ) and a rightopening parabola results. Logger Pro's "Data: New Calculated Column..." tool is used to square the velocity term. The data are then re-plotted $\left(\mathrm{t}, \mathrm{v}^{2}\right)$ and a linear relationship results as is shown in the graph below.

Carefully examine the linear fit for the data set involving v-squared. (See the box within the graph.) Note carefully that the now linear relationship is given explicitly as $v^{2}=m t+b$. Note the fact that m (Slope) is given as $347.5 . \mathrm{m}^{2} / \mathrm{s}^{2} / \mathrm{s}$. The units can be simplified by using the well-known relationship

$$
\frac{\frac{\mathrm{a}}{\mathrm{~b}}}{\frac{\mathrm{c}}{\mathrm{~d}}}=\frac{\mathrm{ad}}{\mathrm{bc}}: \frac{\frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}}{\frac{\mathrm{~s}}{1}}=\frac{\mathrm{m}^{2} * 1}{\mathrm{~s}^{2} * \mathrm{~s}}=\frac{\mathrm{m}^{2}}{\mathrm{~s}^{3}}
$$

Now, $b$ (the Y-intercept) is given by Logger Pro as 76.00 $\mathrm{m}^{2} / \mathrm{s}^{2}$.

The physical form of the relationship is then properly written as follows, including units:

$$
\mathrm{v}^{2}=347.5 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{3}} \mathrm{t}+76.00 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}
$$

Note that when time is inserted into the equation (say t $=4.500 \mathrm{~s}$ ) the units work out
 properly for determining v which is expressed in $\mathrm{m} / \mathrm{s}$. That is,

$$
\begin{aligned}
& \mathrm{v}^{2}=347.5 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{3}}(4.500 \mathrm{~s})+76.00 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \\
& \mathrm{v}^{2}=1564 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}+76.00 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \\
& \mathrm{v}^{2}=1640 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} \\
& \mathrm{v}=\sqrt{\mathrm{v}^{2}}=\sqrt{1640 \cdot \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}=40.50 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

